MUMBAI UNIVERSITY

SEMESTER-1

ENGINEERING MECHANICS QUESTION PAPER - DEC 2017

Q.1Attempt any four questions

Q.1(a) State and prove varigon's theorem.

Solution:

Statement:

The algebraic sum of the moments of a system of coplanar forces about any point in the plane is equal to the moment of the resultant force of the system about the same point.
$\boldsymbol{\Sigma} \mathbf{M}_{\mathrm{A}}{ }^{\mathbf{F}}=\boldsymbol{\Sigma} \mathbf{M}_{\mathrm{A}}{ }^{\mathbf{R}}$
Proof:

Let P and Q be two concurrent forces at O,making angle θ_{1} and θ_{2} with the X-axis
Let R be the resultant making an angle θ with X axis
Let A be a point on the Y -axis about which we shall find the moments of P and Q and also of resultant R.

Let d_{1}, d_{2} and d be the moment arm of P, Q and R from moment centre A
The x component of forces P, Q and R are $\mathrm{P}_{\mathrm{x}}, \mathrm{Q}_{\mathrm{x}}$ and R_{x}
$\therefore \mathrm{M}_{\mathrm{A}}{ }^{\mathrm{P}}=\mathrm{P} \mathrm{x} \mathrm{d}_{1}$
$\therefore \mathrm{M}_{\mathrm{A}}{ }^{\mathrm{Q}}=\mathrm{Q} \mathrm{x} \mathrm{d}{ }_{2}$
$\therefore \mathrm{M}_{\mathrm{A}}{ }^{\mathrm{R}}=\mathrm{RXd}$
$=R($ OA $\cdot \cos \theta)$
$=O A . R_{x}$
Adding (1) and (2)
$\therefore \mathrm{M}_{\mathrm{A}}{ }^{\mathrm{P}}+\mathrm{M}_{\mathrm{A}}{ }^{\mathrm{Q}}=\mathrm{Pd}_{1}+\mathrm{Qd}_{2}$
$\Sigma \mathrm{M}_{\mathrm{A}}{ }^{\mathrm{F}}=\mathrm{P} \times \mathrm{OA} \cos \theta_{1}+\mathrm{Q} \times \mathrm{OA} \cos \theta_{2}$
$=O A \cdot P_{x}+O A \cdot Q_{x} \quad\left(\right.$ as $P_{x}=P \cdot \cos \theta_{1}$ and $\left.\mathrm{Q}_{\mathrm{x}}=\mathrm{Q} \cos \theta_{2}\right)$
$=O A\left(P_{x}+Q_{x}\right)$
$\therefore \Sigma \mathrm{M}_{\mathrm{A}}{ }^{\mathrm{F}}=\mathrm{OA}\left(\mathrm{R}_{\mathrm{x}}\right)$
From (4) and (3)
$\Sigma \mathrm{M}_{\mathrm{A}}{ }^{\mathrm{F}}=\Sigma \mathrm{M}_{\mathrm{A}}$
Thus,Varigon's theorem is proved

Q.1(b) Find the resultant of the force system as shown in the given figure.

 (5 marks)

Solution:

Taking forces having direction upwards as positive.
Net force $=200+300-200-300$

$$
=0 \mathrm{~N}
$$

Taking moments of the forces about the point A
Taking anticlockwise moment direction as positive
$\therefore \mathrm{M}_{\mathrm{A}}=200 \mathrm{x} 7+300 \mathrm{x} 5-300 \mathrm{x} 2$
$=2300 \mathrm{Nm}$ (anticlockwise direction)

The resultant force is 0 .
Net moment is 2300 Nm(anticlockwise)
Q.1(c) Find the co-ordinate of the centroid of the area as shown in the given figure.
(5 marks)

Solution:

Figure	$\text { Area }\left(\mathrm{mm}^{2}\right)$	X coordinate of centroid (mm)	Y co-ordinate of centroid (mm)	$\begin{gathered} \mathbf{A x}_{\mathbf{x}} \\ \left(\mathbf{m m}^{2}\right) \end{gathered}$	$\begin{gathered} \mathbf{A}_{\mathbf{y}} \\ \left(\mathbf{m m}^{2}\right) \end{gathered}$
Quarter circle	$\begin{gathered} 0.25 \times \pi \times \mathrm{R}^{2} \\ =0.25 \times 20^{2} \times \pi \\ =314.1593 \end{gathered}$	$\begin{gathered} \frac{4 R}{3 \pi}=\frac{4 \times 20}{3 \pi} \\ =8.4883 \end{gathered}$	$\begin{gathered} \frac{4 R}{3 \pi}=\frac{4 \times 20}{3 \pi} \\ =8.4883 \end{gathered}$	2666.6667	2666.6667
Semi-circle (to be removed)	$\begin{aligned} & -0.5 \times \pi \times r^{2} \\ & =-157.0796 \end{aligned}$	10	$\begin{aligned} \frac{4 R}{3 \pi} & =\frac{4 \times 10}{3 \pi} \\ & =4.2441 \end{aligned}$	-1570.7963	-666.6667
Total	157.0796			1095.8704	2000

ENGINEERING
$\therefore \mathrm{X}$ co-ordinate of centroid $(\overline{\mathrm{x}})=\frac{\Sigma \mathrm{Ax}}{\Sigma \mathrm{A}}=\frac{1095.8704}{157.0796}=6.9765 \mathrm{~cm}$
$\therefore \mathrm{Y}$ co-ordinate of centroid $(\overline{\mathrm{y}})=\frac{\Sigma \mathrm{Ay}}{\Sigma \mathrm{A}}=\frac{2000}{157.0796}=12.7324 \mathrm{~cm}$

Centroid $=(6.9765,12.7324) \mathrm{cm}$

Q.1(d) A force of 500 N is acting on a block of 50 kg mass resting on a horizontal surface as shown in the figure. Determine the velocity after the block has travelled a distance of 10 m . Co efficient of kinetic friction is 0.5 .
(5 marks)

Solution:

Given : Co-efficient of kinetic friction $\left(\mu_{\mathrm{k}}\right)=0.5$

$$
\begin{aligned}
& \mathrm{P}=500 \mathrm{~N} \\
& \mathrm{~m}=50 \mathrm{~kg} \\
& \mathrm{u}=0 \mathrm{~m} / \mathrm{s} \\
& \mathrm{~s}=10 \mathrm{~m}
\end{aligned}
$$

To find: Velocity after the block has travelled a distance of 10 m

ENGINEERING

Solution:

The body has no motion in the vertical direction.
$\therefore \Sigma \mathrm{F}_{\mathrm{y}}=0$
$\therefore \mathrm{N}-50 \mathrm{~g}+\mathrm{Psin} 30=0$
$\therefore \mathrm{N}=50 \mathrm{~g}-500 \sin 30$
Let us assume that F is the kinetic frictional force
$\therefore \mathrm{F}=\mu_{\mathrm{k}} \mathrm{x} \mathrm{N}$
$\therefore \mathrm{F}=0.5(50 \mathrm{~g}-500 \sin 30)$
$\therefore \mathrm{F}=25 \mathrm{~g}-125$

By Newton's second law of motion

$\sum F_{x}=m a$
$\therefore \mathrm{P} \cos \theta-\mathrm{F}=50 \mathrm{a}$
$\therefore 50 \mathrm{a}=312.7627$
$\therefore \mathrm{a}=6.2553 \mathrm{~m} / \mathrm{s}^{2}$

By kinematics equation

$\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{xaxs}$
$\therefore \mathrm{v}^{2}=0^{2}+2 \times 6.2553 \times 10$
$\therefore \mathrm{v}=11.1851 \mathrm{~m} / \mathrm{s}$
The velocity of the block after travelling a distance of $10 \mathrm{~m}=11.1851 \mathrm{~m} / \mathrm{s}$
Q.1(e) The position vector of a particle which moves in the $\mathrm{X}-\mathrm{Y}$ plane is given by

$$
\bar{r}=\left(3 \mathrm{t}^{3}-4 \mathrm{t}^{2}\right) \bar{\imath}+\left(0.5 \mathrm{t}^{4}\right) \bar{\jmath}
$$

Solution:

Given : $\bar{r}=\left(3 \mathrm{t}^{3}-4 \mathrm{t}^{2}\right) \bar{\imath}+\left(0.5 \mathrm{t}^{4}\right) \bar{\jmath}$
To find : Velocity and acceleration at $\mathrm{t}=1 \mathrm{~s}$
Solution:
$\bar{r}=\left(3 \mathrm{t}^{3}-4 \mathrm{t}^{2}\right) \bar{\imath}+\left(0.5 \mathrm{t}^{4}\right) \bar{J}$
Differentiating w.r.t to t
$\therefore \frac{d \bar{r}}{d t}=\bar{v}=\left(9 \mathrm{t}^{2}-8 \mathrm{t}\right) \bar{l}+\left(2 \mathrm{t}^{3}\right) \mathrm{m} / \mathrm{s}$
Differentiating once again w.r.t to t
$\therefore \frac{d \bar{v}}{d t}=\bar{a}=(18 \mathrm{t}-8) \bar{l}+\left(6 \mathrm{t}^{2}\right) \bar{\jmath}$
$\therefore \bar{a}=(18 \mathrm{t}-8) \bar{l}+(6 \mathrm{t} 2) \bar{\jmath} \mathrm{m} / \mathrm{s}^{2}$
At $\mathrm{t}=1$,
Substituting $t=1$ in (1) and (2)
At $\mathrm{t}=1 \mathrm{~s}$
$\bar{v}=\bar{\imath}+2 \bar{\jmath} \mathrm{~m} / \mathrm{s}$
$\bar{a}=10 \bar{\imath}+6 \bar{\jmath} \mathrm{~m} / \mathrm{s}^{2}$
For magnitude :
$\mathrm{v}=\sqrt{1^{2}+2^{2}}$
$=\sqrt{5}$
$=2.2361 \mathrm{~m} / \mathrm{s}$
$a=\sqrt{10^{2}+6^{2}}$
$=\sqrt{136}$
$=11.6619 \mathrm{~m} / \mathrm{s}^{2}$

Velocity at $\mathrm{t}=1 \mathrm{~s}$ is $2.2361 \mathrm{~m} / \mathrm{s}$
Acceleration at $\mathrm{t}=1 \mathrm{~s}$ is $11.6619 \mathrm{~m} / \mathrm{s}^{2}$

Given : Forces on the bell crank lever
To find : Resultant and it's position w.r.t hinge B

Solution:

Let the resultant of the system of forces be R and it is inclined at an angle θ to the horizontal
The hinge is in equilibrium
Taking direction of forces towards right as positive and towards upwards as positive

ENGINEERING

Applying the conditions of equilibrium

$\Sigma \mathrm{F}_{\mathrm{x}}=0$
$\mathrm{R}_{\mathrm{x}}=50 \cos 60+120$
$=145 \mathrm{~N}$
$R_{y}=-50 \sin 60-100$
$=-143.3013$
$\mathrm{R}=\sqrt{R_{x}^{2}+R_{y}^{2}}$
$=\sqrt{145^{2}+(-143.3013)^{2}}$
$=203.8633 \mathrm{~N}$

$$
\begin{aligned}
\theta & =\tan ^{-1}\left(\frac{R_{y}}{R_{x}}\right) \\
& =\tan ^{-1}\left(\frac{143.3013}{145}\right) \\
& =44.6624^{\circ}
\end{aligned}
$$

50 N

Let the resultant force R be acting at a point x from the point A and it is at a perpendicular distance of d from point A

Taking moment of forces about point A and anticlockwise moment as positive

Applying Varigon's theorem,
$203.8633 \times \mathrm{d}=-(100 \times 20)-(120 \times 40 \cos 30)$
$\mathrm{d}=-30.2012 \mathrm{~cm}=30.2012 \mathrm{~cm}$
(as distance is always positive)
$\sin 44.6624=\frac{x}{30.2012}$
$\mathrm{x}=21.2293 \mathrm{~cm}$
Distance from point $\mathrm{B}=40-21.2293$

$$
=18.7707 \mathrm{~cm}
$$

Resultant force $=203.8633 \mathrm{~N}$ (at an angle of 44.6624° in first quadrant) Distance of resultant force from hinge $B=18.7707 \mathrm{~cm}$

Q2b) Determine the reaction at points of constant 1,2 and 3. Assume smooth surfaces.

(6 marks)

Given: The spheres are in equilibrium
To find: Reactions at points 1,2 and 3

Solution:

Considering both the spheres as a single body
The system of two spheres is in equilibrium
Applying conditions of equilibrium:
$\sum \mathrm{F}_{\mathrm{y}}=0$
$\mathrm{R}_{1} \cos 25+\mathrm{R}_{3} \cos 15-\mathrm{g}-4 \mathrm{~g}=0$
$\mathrm{R}_{1} \cos 25+\mathrm{R}_{3} \cos 15=5 \mathrm{~g}$
$\sum \mathrm{F}_{\mathrm{x}}=0$
$\mathrm{R}_{1} \sin 25-\mathrm{R}_{3} \sin 15=0$
Solving (1) and (2)
$\mathrm{R}_{1}=19.75 \mathrm{~N}$ and $\mathrm{R}_{2}=32.2493 \mathrm{~N}$
Let the reaction force between the wo spheres be R_{2} and it acts at an angle α with X -axis Sphere A is in equilibrium

Applying conditions of equilibrium

$\sum \mathrm{F}_{\mathrm{y}}=0$
$\mathrm{R}_{1} \cos 25-\mathrm{R}_{2} \sin \alpha-\mathrm{g}=0$

ENGINEERING
$\mathrm{R}_{2} \sin \alpha=8.0896$
(From 3)
$\sum \mathrm{F}_{\mathrm{x}}=0$
$\mathrm{R}_{1} \sin 25-\mathrm{R}_{2} \cos \alpha=0$
$\mathrm{R}_{2} \cos \alpha=19.75 \sin 25$
$\mathrm{R}_{2} \cos \alpha=8.3467$

Squaring and adding (4) and (5)
$\mathrm{R}_{2}{ }^{2}\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)=135.1095$
$\mathrm{R}_{2}=11.6237 \mathrm{~N}$
Dividing (4) by (5)

$$
\begin{aligned}
\frac{R_{2} \sin \alpha}{R_{2} \cos \alpha} & =\frac{\mathbf{8 . 0 8 9 6}}{\mathbf{8 . 3 4 6 7}} \\
\alpha & =\tan ^{-1}(0.9692) \\
& =44.1038^{\circ}
\end{aligned}
$$

$\mathrm{R}_{1}=19.75 \mathrm{~N}\left(75^{\circ}\right.$ with positive direction of X -axis in first quadrant)
$\mathrm{R}_{2}=11.6237 \mathrm{~N}$ (44.1038° with negative direction of X -axis in third quadrant)
$\mathrm{R}_{3}=32.2493 \mathrm{~N}$ (75° with negative direction of X axis in second quadrant)
Q. 2 c) Two balls having 20 kg and 30 kg masses are moving towards each other with velocities of $10 \mathrm{~m} / \mathrm{s}$ and $5 \mathrm{~m} / \mathrm{s}$ respectively as shown in the figure. If after the impact, the ball having 30 kg mass is moving with $6 \mathrm{~m} / \mathrm{s}$ velocity to the right then determine the coefficient of restitution between the two balls. (6 marks)

Solution:

Taking direction of velocity towards right(\rightarrow) as positive and vice versa
Given : $\mathrm{m}_{1}=20 \mathrm{~kg}$

$$
\mathrm{m}_{2}=30 \mathrm{~kg}
$$

Initial velocity of ball $m_{1}\left(u_{1}\right)=10 \mathrm{~m} / \mathrm{s}$
Initial velocity of ball $m_{2}\left(u_{2}\right)=-5 \mathrm{~m} / \mathrm{s}$
Final velocity of ball $\mathrm{m}_{2}\left(\mathrm{v}_{2}\right)=6 \mathrm{~m} / \mathrm{s}$

To find : Co-efficient of restitution(e)

Solution:

This is a case of direct impact as the centre of mass of both balls lie along a same line.

According to the law of conservation of momentum:
$\mathrm{m}_{1} \mathrm{u}_{1}+\mathrm{m}_{2} \mathrm{u}_{2}=\mathrm{m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2} \mathrm{v}_{2}$
$\therefore 20 \times 10+30 \times(-5)=20 \times \mathrm{v} 1+30 \times 6$
$\therefore 200-150=20 \mathrm{x} v 1+180$
$\therefore-130=20 \mathrm{x}$ v1
$\therefore \mathrm{v} 1=-6.5 \mathrm{~m} / \mathrm{s}$

Co-efficient of restitution $(\mathrm{e})=(\boldsymbol{v} \mathbf{2}-\boldsymbol{v} \mathbf{1}) /(\boldsymbol{u} \mathbf{1}-\boldsymbol{u} \mathbf{2})$
$\therefore \mathrm{e}=(6-(-6.5)) /(10-(-5))$
$\therefore \mathrm{e}=12.5 / 15$
$\therefore e=0.8333$

The co-efficient of restitution (e) between the two balls is 0.8333

Q.3(a) Determine the position of the centroid of the plane lamina. Shaded portion is removed.

ENGINEERING

Solution:

FIGURE	AREA $\left(\mathbf{m m}^{2}\right)$	X co-ordinate Of centroid $(\mathbf{m m})$	Y co-ordinate Of centroid $(\mathbf{m m})$	$\mathbf{A}_{\mathbf{x}}$ $\left(\mathbf{m m}^{2}\right)$	$\mathbf{A y}_{\mathbf{y}}$ $\left(\mathbf{m m}^{2}\right)$
Rectangle	120×100 $=12000$	$\frac{120}{2}=60$	$\frac{120}{2}=60$	720000	600000
Triangle	$\frac{1}{2} \times 120 \times 60$ $=3600$	$\frac{120}{3}=40$	$\frac{-60}{3}=-20$	144000	-72000
Semicircle	$\frac{1}{2} \times \pi \times 60^{2}$ $=1800 \pi$ $=5654.8668$	$\frac{120}{2}=60$	$100+\frac{4 * 60}{3 \pi}$	339292.01	709486.68
Circle (Removed)	$-\pi \times 40^{2}$ $=5026.5482$	$\frac{120}{2}=60$	100	-35.4648	
Total	16228.32			901592.89	-502654.82

$$
\frac{\Sigma \mathrm{Ax}}{\Sigma \mathrm{~A}}=\frac{901699.12}{16228.32}=55.56 \mathrm{~mm}
$$

$$
\frac{\Sigma \mathrm{Ay}}{\Sigma \mathrm{~A}}=\frac{734831.86}{16228.32}=45.28 \mathrm{~mm}
$$

Centroid is at $(55.56,45.28) \mathrm{mm}$

Q3(b) Explain the conditions for equilibrium of forces in space.

Answer:

A body is said to be in equilibrium if the resultant force and the resultant momentum acting on a body is zero.

For a body in space to remain in equilibrium, following conditions must be satisfied:
(1) Algebraic sum of the X components of all the forces is zero. $\Sigma F_{x}=0$
(2)Algebraic sum of the Y components of all the forces is zero.
$\Sigma \mathrm{F}_{\mathrm{y}}=0$
(3)Algebraic sum of the Z components of all the forces is zero.
$\Sigma \mathrm{F}_{\mathrm{z}}=0$
(4)Algebraic sum of the moment of all the forces about any point in the space is zero.

Q.3(c) A 30 kg block is released from rest.If it slides down from a rough incline which is having co-efficient of friction 0.25.Determine the maximum compression of the spring.Take $\mathrm{k}=1000 \mathrm{~N} / \mathrm{m}$.

ENGINEERING

Solution:

Given : Value of spring constant $=1000 \mathrm{~N} / \mathrm{m}$

$$
\begin{aligned}
W & =30 N \\
\mu s & =0.25
\end{aligned}
$$

To find : Maximum compression of the spring

Solution:

Let the spring be compressed by x cm when the box stops sliding
$\mathrm{N}=\mathrm{W} \cos 30$
$=30 \times 0.866$
$=25.9808 \mathrm{~N}$
Frictional force $=\mu_{\mathrm{s}} \mathrm{N}$

$$
\begin{aligned}
& =0.25 \times 25.9808 \\
& =6.4952 \mathrm{~N}
\end{aligned}
$$

Displacement of block $=(1.6+x) \mathrm{m}$
Work done against frictional force $=\mathrm{F}_{\mathrm{D}} \mathrm{x} \mathrm{s}$

$$
=6.4952(1.6+x)
$$

At position 1

$\mathrm{v}_{1}=0 \mathrm{~m} / \mathrm{s}$
Vertical height above position(II) $=\mathrm{h}=(1.6+\mathrm{x}) \sin 30$
$\mathrm{PE}_{1}=\mathrm{mgh}=30(1.6+\mathrm{x}) \sin 30=15(1.6+\mathrm{x})$
$\mathrm{KE}_{1}=\frac{1}{2} \mathrm{x} \mathrm{mv}_{1}{ }^{2}=0$
Compression of spring=0
Initial spring energy $=\frac{1}{2} x \mathrm{Kx}^{2}=0$
At position II
Assuming this position as ground position
$\mathrm{H}^{2}=0$
P. $\mathrm{E}^{2}=0$

Speed of block $\mathrm{v}=0$
K. $E_{2}=\frac{1}{2} \times \mathrm{mv}^{2}=0$

Compression of spring $=\mathrm{x}$
Final spring energy $=\mathrm{E}_{S}=\frac{1}{2} \mathrm{xKx}\left(\mathrm{x}^{2}\right)$

$$
\begin{aligned}
& =0.5 \times 1000 \mathrm{x} \mathrm{x}^{2} \\
& =500 \mathrm{x}^{2}
\end{aligned}
$$

Appling work energy principle for the position (I) and (II)
$\mathrm{U}_{1-2}=\mathrm{KE}_{2}-\mathrm{KE}_{1}$
$-\mathrm{W}_{\mathrm{F}}+\mathrm{PE}_{1}-\mathrm{PE}_{2}-\mathrm{E}_{\mathrm{S}}=\mathrm{KE}_{2}-\mathrm{KE}_{1}$
$-6.4952(1.6+x)+15(1.6+x)-0-500 \times 2=0-0$
$500 x^{2}-8.5048 \mathrm{x}-13.6077=0$
$\mathrm{x}=0.1737 \mathrm{~m}$

The maximum compression of the spring is 0.1737 m

Q.4(a)Find the support reactions at A and B for the beam loaded as shown in the given figure.

Solution:

Given : Various forces on beam
To find : Support reactions at A and B

Solution:

Draw PQ \perp to RS
Effective force of uniform load $=20 \times 6=120 \mathrm{kN}$
$2+\frac{6}{2}=5 \mathrm{~m}$
This load acts at 5 m from A
Effective force of uniformly varying load $=\frac{1}{2} \mathrm{x}(80-20) \times 6$

$$
=180 \mathrm{kN}
$$

$2+\frac{6}{3} \times 2=6 \mathrm{~m}$
This load acts at 6 m from A

The beam is in equilibrium
Applying the conditions of equilibrium
$\sum \mathrm{M}_{\mathrm{A}}=0$
$-120 \times 5-180 \times 6+R_{B} \cos 30 \times 10-80 \times 13=0$
$10 \mathrm{R}_{\mathrm{B}} \cos 30=120 \times 5+180 \times 6+80 \times 13$
$\mathrm{RB}=314.0785 \mathrm{~N}$
Reaction at B will be at 60° in second quadrant
$\sum \mathrm{F}_{\mathrm{x}}=0$
$\mathrm{R}_{\mathrm{A}} \cos \alpha-\mathrm{R}_{\mathrm{B}} \sin 30=0$
$\mathrm{R}_{\mathrm{A}} \cos \alpha-314.0785 \times 0.5=0$
$\mathrm{R}_{\mathrm{A}} \cos \alpha=157.0393 \mathrm{~N}$
$\sum \mathrm{Fy}=0$
$\mathrm{R}_{\mathrm{A}} \sin \alpha-120-180+\mathrm{RB} \cos 30-80=0$
$\mathrm{R}_{\mathrm{A}} \sin \alpha=12+180-314.0785 \times 0.866+80$
$\mathrm{R}_{\mathrm{A}} \sin \alpha=108.008 \mathrm{~N}$

Squaring and adding (1) and (2)
$\mathrm{R}_{\mathrm{A}}{ }^{2}\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)=36325.3333$
$\mathrm{R}_{\mathrm{A}}=190.5921 \mathrm{~N}$
Dividing (2) by (1)
$\frac{R_{A} \sin \alpha}{R_{A} \cos \alpha}=\frac{108.008}{157.0393}$
$\alpha=\tan ^{-1}(0.6877)$
$=34.5173^{\circ}$

Reaction at point $\mathrm{A}=190.5921 \mathrm{~N}$ at 34.5173° in first quadrant
Reaction at $\mathrm{B}=314.0785 \mathrm{~N}$ at 60° in second quadrant

Q 4b) The V-X graph of a rectilinear moving particle is shown. Find the acceleration of the particle at $20 \mathrm{~m}, 80 \mathrm{~m}$ and 200 m .

Solution:

Given : V-X graph of a rectilinear moving particle
To find : Acceleration of the particle at $20 \mathrm{~m}, 80 \mathrm{~m}$ and 200 m .
Solution :
$\mathrm{a}=\mathrm{v} \frac{d v}{d x}$

Part 1: Motion from O to A

O is $(0,0)$ and A is $(60,6)$
Slope of $v-x$ curve $\frac{d v}{d x}=\frac{6-0}{60-0}=0.1 \mathrm{~s}^{-1}$
Average velocity $=\frac{u+v}{2}=\frac{6+0}{2}=3 \mathrm{~m} / \mathrm{s}$
$\mathrm{aOA}_{\mathrm{OA}}=\mathrm{v} \frac{d v}{d x}=3 \times 0.1=0.3 \mathrm{~m} / \mathrm{s}^{2}$

Part 2: Motion from A to B

A is $(60,6)$ and B is $(180,6)$
$\frac{d v}{d x}=\frac{6-6}{180-60}=0 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{a}_{\mathrm{AB}}=\mathrm{v} \frac{d v}{d x}=0 \mathrm{~m} / \mathrm{s}^{2}$

Part 3: Motion from B to C
B is $(180,6)$ and C is $(210,0)$
$\frac{d v}{d x}=\frac{0-6}{210-180}=-0.2 \mathrm{~s}^{-1}$
Average velocity $=\frac{u+v}{2}=\frac{6+0}{2}=3 \mathrm{~m} / \mathrm{s}$ $\mathrm{a}_{\mathrm{BC}}=\mathrm{v} \frac{d v}{d x}=3 \times(-0.2)=-0.6 \mathrm{~m} / \mathrm{s}^{2}$

Acceleration of particle at $\mathbf{x}=\mathbf{2 0} \mathbf{m}$ is $\mathbf{0 . 3} \mathbf{m} / \mathrm{s}^{2}$
Acceleration of particle at $x=80 \mathrm{~m}$ is $0 \mathrm{~m} / \mathrm{s}^{\mathbf{2}}$
Acceleration of particle at $x=200 \mathrm{~m}$ is $\mathbf{- 0 . 6} \mathbf{~ m} / \mathrm{s}^{\mathbf{2}}$
Q.4(c) A bar 2 m long slides down the plane as shown.The end A slides on the horizontal floor with a velocity of $3 \mathrm{~m} / \mathrm{s}$.Determine the angular velocity of rod $A B$ and the velocity of end B for the position shown.

Solution:

Given : $\mathrm{v}_{\mathrm{a}}=3 \mathrm{~m} / \mathrm{s}$
Length of bar $\mathrm{AB}=2 \mathrm{~m}$
To find : Angular velocity ω
Velocity of end B

Solution:

Let ω be the angular velocity of the $\operatorname{rod} \mathrm{AB}$
ICR is shown in the free body diagram

ENGINEERING

Using Geometry:
$\angle \mathrm{BDE}=30^{\circ}, \angle \mathrm{BAD}=20^{\circ}$
$\angle \mathrm{CBD}=\angle \mathrm{BDE}=30^{\circ}$
$\angle \mathrm{CBA}=\angle \mathrm{BAD}=20^{\circ}$
$\angle \mathrm{CBI}=90^{\circ}-30^{\circ}=60^{\circ}$
$\angle \mathrm{ABI}=\angle \mathrm{CBI}+\angle \mathrm{CBA}=60^{\circ}+20^{\circ}=80^{\circ}$
$\angle \mathrm{BAI}=90^{\circ}-20^{\circ}=70^{\circ}$
In $\triangle \mathrm{IAB}, \angle \mathrm{AIB}=180^{\circ}-80^{\circ}-70^{\circ}=30^{\circ}$
By sine rule, $\frac{A B}{\sin I}=\frac{I B}{\sin A}=\frac{I A}{\sin B}$
$\therefore \frac{2}{\sin 30}=\frac{I B}{\sin 70}=\frac{I A}{\sin 80}$
$\therefore \mathrm{IB}=\frac{2 \sin 70}{\sin 30}=3.7588 \mathrm{~m}$
$\therefore \mathrm{IA}=\frac{2 \sin 80}{\sin 30}=3.9392 \mathrm{~m}$
\therefore Angular velocity of the $\operatorname{rod} \mathrm{AB}=\frac{v a}{r}=\frac{3}{3.9392}=0.7616 \mathrm{rad} / \mathrm{s}$ (clockwise direction)
\therefore Instantaneous velocity of point $\mathrm{B}=\mathrm{r} \omega=\mathrm{IB} \times \omega=3.7588 \times 0.7616=2.8626 \mathrm{~m} / \mathrm{s}$
The instantaneous velocity at point B is always inclined at 30° in the third quadrant (as shown in the free body diagram)

Angular velocity of the $\operatorname{rod} \mathrm{AB}=\mathbf{0 . 7 6 1 6} \mathbf{r a d} / \mathrm{s}$ (clockwise)
Instantaneous velocity at point $B=2.8626 \mathrm{~m} / \mathrm{s}\left(30^{\circ} \swarrow\right)$
Q.5(a)Referring to the truss shown in the figure. Find :
(a) Reaction at D and C
(b)Zero force members.
(c)Forces in member FE and DC by method of section.
(d)Forces in other members by method of joints.

ENGINEERING

Solution:

By Geometry:

In $\triangle \mathrm{ADC}, \angle \mathrm{ADC}=\angle \mathrm{CAD}=30^{\circ}$
$\mathrm{AC}=\mathrm{CD}=1$
Similarly, in \triangle EDC,
$\mathrm{ED}=\mathrm{EC}$
$\Delta \mathrm{DEG}$ and $\Delta \mathrm{CEG}$ are congruent
$\mathrm{DG}=\mathrm{GC}=\frac{l}{2}$
In $\triangle \mathrm{DEG}, \angle \mathrm{EDG}=30^{\circ}, \angle \mathrm{DGE}=90^{\circ}$
$\tan 30=\frac{E G}{D G}$
$\mathrm{EG}=\mathrm{DG} \cdot \tan 30=\frac{l}{2} \mathrm{x} \frac{1}{\sqrt{3}}=\frac{l}{2 \sqrt{3}}$
In $\triangle \mathrm{ACH}$,
$\mathrm{CH}=\frac{A C}{2}=\frac{l}{2}$
$\mathrm{DH}=\mathrm{DC}+\mathrm{CH}=1+\frac{l}{2}=\frac{3 l}{2}$
No horizontal force is acting on the truss, so no horizontal reaction will be present at point A
The truss is in equilibrium
Applying the conditions of equilibrium
$\Sigma \mathrm{M}_{\mathrm{D}}=0$
$-20 \times \mathrm{DG}-50 \times \mathrm{DH}+\mathrm{RC} \times \mathrm{DC}=0$
$-20 \times \frac{l}{2}-50 \times \frac{3 l}{2}+\mathrm{RC} \times 1=0$
$-10-75+\mathrm{RC}=0$
$\mathrm{R}_{\mathrm{C}}=85 \mathrm{kN}$
$\Sigma \mathrm{F}_{\mathrm{y}}=0$
$-20-50+R_{D}+R_{C}=0$
$R_{D}=-15 k N$
Loading at point B and F is shown

As per the rule,member BF will have zero force and is a zero force number.
Similarly,Member CF will have zero force

ENGINEERING

Method of sections :

Applying the conditions of equilibrium to the section shown
$\Sigma \mathrm{M}_{\mathrm{D}}=0$
$-20 \times \mathrm{DG}-\mathrm{F}_{\mathrm{EC}} \cos 30 \times \mathrm{EG}-\mathrm{F}_{\mathrm{EC}} \sin 30 \times \mathrm{DG}=0$
$-20 \times \frac{l}{2} \mathrm{x}-\mathrm{F}_{\mathrm{EC}} \cos 30 \times \mathrm{EG}-\mathrm{F}_{\mathrm{EC}} \sin 30 \times \mathrm{DG}=0$
$-20 \times \frac{l}{2} \times-\mathrm{F}_{\mathrm{EC}} \times \frac{\sqrt{3}}{2} \times \frac{l}{2}-\mathrm{F}_{\mathrm{EC}} \times \frac{1}{2} \times \frac{l}{2}=0$
$-10 \times 1-\mathrm{F}_{\mathrm{EC}} \times \frac{l}{4}-\mathrm{F}_{\mathrm{EC}} \times \frac{l}{4}=0$
$-\frac{2 l}{4} \mathrm{~F}_{\mathrm{EC}}=10 \mathrm{~L}$
$\mathrm{F}_{\mathrm{EC}}=-20 \mathrm{kN}$
$\mathrm{R}_{\mathrm{D}}-20-\mathrm{F}_{\mathrm{EC}} \sin 30+\mathrm{F}_{\mathrm{EA}} \sin 30=0$
$-15-20+20 \times 0.5+\mathrm{F}_{\text {EA }} \times 0.5=0$
$\mathrm{F}_{\mathrm{EA}}=50 \mathrm{kN}$
$\mathrm{F}_{\mathrm{EC}} \cos 30+\mathrm{F}_{\mathrm{EA}} \cos 30+\mathrm{F}_{\mathrm{DC}}=0$
$-20 \times 0.866+50 \times 0.866+\mathrm{F}_{\mathrm{DC}}=0$
$F_{D C}=-25.9808 \mathrm{kN}$

Method of joints:

Joint A

$-50-\mathrm{F}_{\mathrm{AE}} \sin 30-\mathrm{F}_{\mathrm{AC}} \cos 30=0$
$-50-50 \times 0.5=\mathrm{F}_{\mathrm{AC}} \times 0.866$
$\mathrm{F}_{\mathrm{AC}}=-86.6025 \mathrm{kN}$

Joint D

$\mathrm{F}_{\mathrm{DC}}+\mathrm{F}_{\mathrm{DE}} \cos 30=0$
$-25.9808+0.866 \mathrm{~F}_{\mathrm{DE}}=0$
$\mathrm{F}_{\mathrm{DE}}=30 \mathrm{kN}$

Final answer :

Member	Magnitude (in kN)	Nature
AE $(\mathrm{AF}$ and EF)	50	Tension
AC $(\mathrm{AB}$ and BC$)$	86.6025	Compression
EC	20	Compression
DE	30	Tension
DC	25.9808	Compression
FB	0	
FC	0	

Q.5b) Determine the force P required to move the block A of 5000 N weight up the inclined plane, coefficient of friction between all contact surfaces is 0.25 . Neglect the weight of the wedge and the wedge angle is 15 degrees. (6 marks)

Given : Weight of block A $=5000 \mathrm{~N}$
$\mu_{\mathrm{s}}=0.25$
Wedge angle $=15^{\circ}$

To find : Force P required to move block A up the inclined plane

Solution:

The impending motion of block A is to move up
The block A is in equilibrium
$\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}$ are the normal reactions
$\mathrm{F}_{\mathrm{s} 1}=\mu_{1} \mathrm{~N}_{1}=0.25 \mathrm{~N}_{1}$
$\mathrm{F}_{\mathrm{s} 2}=\mu_{2} \mathrm{~N}_{2}=0.25 \mathrm{~N}_{2}$
$\mathrm{F}_{\mathrm{s} 3}=\mu_{3} \mathrm{~N}_{3}=0.25 \mathrm{~N}_{3}$

Applying the conditions of equilibrium

$\Sigma \mathrm{F}_{\mathrm{y}}=0$
$\therefore-5000+\mathrm{N}_{1} \cos 60-\mathrm{F}_{\mathrm{s} 1} \sin 60-\mathrm{F}_{\mathrm{s} 2} \sin 15+\mathrm{N}_{2} \cos 15=0$
$\therefore \mathrm{N}_{1} \times 0.5-0.25 \mathrm{~N}_{1} \times 0.866-0.25 \mathrm{~N}_{2} \times 0.2588+\mathrm{N}_{2} \times 0.9659=5000$
(From 1)
$\therefore 0.2835 \mathrm{~N}_{1}+0.9012 \mathrm{~N}_{2}=5000$

Applying the conditions of equilibrium

$\Sigma \mathrm{F}_{\mathrm{x}}=0$
$\therefore \mathrm{N}_{1} \sin 60+\mathrm{F}_{\mathrm{s} 1} \cos 60-\mathrm{F}_{\mathrm{s} 2} \cos 15-\mathrm{N}_{2} \sin 15=0$
$\therefore 0.866 \mathrm{~N}_{1}+0.25 \times \mathrm{N}_{1} \times 0.5-0.25 \times \mathrm{N}_{2} \times 0.9659-\mathrm{N}_{2} \times 0.2588=0($ From 1$)$
$\therefore 0.991 \mathrm{~N}_{1}-0.5003 \mathrm{~N}_{2}=0$
Solving equation, no 2 and 3
$\mathrm{N}_{1}=2417.0851 \mathrm{~N}$
$\mathrm{N}_{2}=4787.79 \mathrm{~N}$
The impending motion of block B is towards left
Block B is in equilibrium. Applying the conditions of equilibrium
$\Sigma \mathrm{F}_{\mathrm{y}}=0$
$\therefore \mathrm{N}_{3}+\mathrm{F}_{\mathrm{s} 2} \sin 15-\mathrm{N}_{2} \cos 15=0$
$\therefore \mathrm{N}_{3}+0.25 \mathrm{~N}_{2} \times 0.2588-\mathrm{N}_{2} \times 0.9659=0$
$\therefore \mathrm{N}_{3}-0.9012 \mathrm{~N}_{2}=0$
$\therefore \mathrm{N}_{3}=0.9012 \times 4787.79=4314.7563$
Applying conditions of equilibrium
$\Sigma \mathrm{F}_{\mathrm{x}}=0$
$\therefore-\mathrm{P}+\mathrm{F}_{\mathrm{s} 3}+\mathrm{F}_{\mathrm{s} 2} \cos 15+\mathrm{N}_{2} \sin 5=0$
$\therefore 0.25 \mathrm{~N}_{3}+0.25 \mathrm{~N}_{2} \times 0.9659+\mathrm{N}_{2} \times 0.2588=\mathrm{P}$
$\therefore \mathrm{P}=0.25 \mathrm{~N}_{3}+0.5003 \mathrm{~N}_{2}=0.25 \mathrm{X} 4314.7563+0.5003 \times 4787.79=3474 \mathrm{~N}$

The force P required to move the block A of weight 5000 N up the inclined plane is $\mathrm{P}=3474 \mathrm{~N}$

Q 5c) Determine the tension in a cable $B C$ shown in fig by virtual work method.

Given: $\mathrm{F}=3500 \mathrm{~N}$
$\theta=50$ o
Length of $\operatorname{rod}=3.75 \mathrm{~mm}+1.5 \mathrm{~mm}=5.25 \mathrm{~mm}$

To find : Tension in cable BC

Solution:

Let rod $A B$ have a small virtual angular displacement θ in the clockwise direction
No virtual work will be done by the reaction force RA since it is not an active force
Assuming weight of rod to be negligible
Let A be the origin and dotted line through A be the X -axis of the system

Active force(N)	Co-ordinate of the point of action along the force	Virtual displacement
3500	$\mathrm{Y} \operatorname{co}-$ ordinate of $\mathrm{D}=\mathrm{y}_{\mathrm{D}}=3.75 \sin \theta$	$\boldsymbol{\delta} \mathrm{y}_{\mathrm{D}}=3.75 \cos \theta \boldsymbol{\delta} \theta$
$\mathrm{~T} \cos 30$	$\mathrm{X} \operatorname{co}-$ ordinate of $\mathrm{B}=\mathrm{x}_{\mathrm{B}}=5.25 \cos \theta$	$\boldsymbol{\delta} \mathrm{x}_{\mathrm{B}}=-5.25 \sin \theta \boldsymbol{\delta} \theta$

Tsin30	Y co-ordinate of $\mathrm{B}=\mathrm{y}_{\mathrm{B}}=5.25 \sin \theta$	$\boldsymbol{\delta} \mathrm{y}_{\mathrm{B}}=5.25 \cos \theta \boldsymbol{\delta} \theta$

By principle of virtual work :
-3500 x yd $-\mathrm{T} \sin 30 \mathrm{x}$ yB $-\mathrm{T} \cos 30 \mathrm{xxB}=0$
$-3500(3.75 \cos \theta \boldsymbol{\delta} \theta)-\mathrm{T} \sin 30(5.25 \cos \theta \boldsymbol{\delta} \theta)-\mathrm{T} \cos 30(-5.25 \sin \theta \boldsymbol{\delta} \theta)=0$

Putting value of $\theta=50^{\circ}$ and dividing the above equation by $\delta \theta$
$(-3500 \times 3.75 \cos 50)-(T \sin 30 \times 5.25 \cos 50)+(T \cos 30 \times 5.25 \sin 50)=0$
$5.25 \mathrm{~T}(-\sin 30 \cdot \cos 50+\cos 30 \cdot \sin 50)=3500 \times 3.75 \cos 50$
$\mathrm{T}=\frac{3500 * 3.75 \cos 50}{5.25(\cos 30 \cdot \sin 50-\sin 30 \cdot \cos 50}$
$=\frac{3500 * 3.75 \cos 50}{5.25 \sin 20}$
$=4698.4631 \mathrm{~N}$

The tension in the cable BC is 4698.4631 N

Q 6a) A 500 N Crate kept on the top of a 15° sloping surface is pushed down the plane with an initial velocity of $20 \mathrm{~m} / \mathrm{s}$. If $\mu \mathrm{s}=0.5$ and $\mu \mathrm{k}=0.4$, determine the distance travelled by the block and the time it will take as it comes to rest.

Given: Weight of crate $=500 \mathrm{~N}$
Initial velocity $(\mathrm{u})=20 \mathrm{~m} / \mathrm{s}$
$\mu \mathrm{s}=0.5$
$\mu \mathrm{k}=0.4$
$\theta=15^{\circ}$
Final velocity $(\mathrm{v})=0 \mathrm{~m} / \mathrm{s}$

To find: Distance travelled by the block
Time it will take before coming to rest

Solution:
$\operatorname{Mass}(\mathrm{M})=\frac{W}{g}$

$$
=\frac{500}{9.81}
$$

ENGINEERING

$$
=50.9684 \mathrm{~kg}
$$

Normal reaction (N) on the crate $=500 \cos 15$
Kinetic friction $\left(\mathrm{F}_{\mathrm{k}}\right)=\mu_{\mathrm{k}} \mathrm{x} \mathrm{N}$

$$
\begin{aligned}
& =0.4 \times 500 \cos 15 \\
& =193.1852 \mathrm{~N}
\end{aligned}
$$

Let T be the force down the incline
Taking forces towards right of the crate as positive and forces towards left as negative $\mathrm{T}+\mathrm{F}_{\mathrm{k}}=500 \sin 15$
$\therefore \mathrm{T}=500 \sin 15-193.1852$
$\therefore \mathrm{T}=-63.7756 \mathrm{~N}$

By Newton's second law of motion

$\mathrm{a}=\mathrm{F} / \mathrm{m}$
$\therefore \mathrm{a}=\frac{-63.7756}{50.9684}=-1.2513 \mathrm{~m} / \mathrm{s}^{2}$
Using kinematical equation:
$\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as}$
$\therefore 0=202-2 \mathrm{x} 1.2513 \mathrm{x} \mathrm{s}$
$\therefore \mathrm{s}=159.8366 \mathrm{~m}$
Using kinematical equation:
$\mathrm{v}=\mathrm{u}+\mathrm{at}$
$\therefore 0=20-1.2513 \mathrm{t}$
$\therefore \mathrm{t}=15.9837 \mathrm{~s}$
\therefore Distance travelled by the block before stopping $=159.8366 \mathrm{~m}$
\therefore Time taken by the block before stopping $=15.9847 \mathrm{~s}$

ENGINEERING

Q.6b)Derive the equation of path of a projectile and hence show that equation of path of projectile is a parabolic curve.

Solution :

Let us assume that a projectile is fired with an initial velocity u at an angle θ with the horizontal.
Let t be the time of flight.
Let x be the horizontal displacement and y be the vertical displacement.

HORIZONTAL MOTION :

In the horizontal direction,the projectile moves with a constant velocity.
Horizontal component of initial velocity u is $u \cdot \cos \theta$

Displacement $=$ velocity x time
$\mathrm{x}=\mathrm{u} \cdot \cos \theta \mathrm{xt}$
$\mathrm{t}=\frac{x}{u \cos \theta}$

VERTICAL MOTION OF PROJECTILE:

In the vertical motion,the projectile moves under gravity and hence this is an accelerated motion.
Vertical component of initial velocity $u=u \cdot \sin \theta$
Using kinematics equation :
$\mathrm{s}=\mathrm{u}_{\mathrm{y}} \mathrm{t}+\frac{1}{2} \mathrm{xaxt}^{2}$
$\mathrm{y}=\mathrm{u} \sin \theta \mathrm{x} \frac{x}{u \cos \theta}-\frac{1}{2} \mathrm{xg} \mathrm{x}\left(\frac{x}{u \cos \theta}\right)^{2}$
$\mathbf{y}=\mathrm{x} \tan \theta-\frac{g x^{2}}{2 u^{2} \cos ^{2} \theta}$

This is the equation of the projectile
This equation is also the equation of a parabola
Thus, proved that path traced by a projectile is a parabolic curve.

Q.6c)A particle is moving in X-Y plane and it's position is defined by

$\bar{r}=\left(\frac{3}{2} \mathrm{t}^{2}\right) \overline{\boldsymbol{\imath}}+\left(\frac{2}{3} \mathrm{t}^{3}\right) \bar{\jmath}$.Find radius of curvature when $\mathrm{t}=2 \mathrm{sec}$.

Solution:

Given: $\bar{r}=\left(\frac{3}{2} \mathrm{t}^{2}\right) \bar{\imath}+\left(\frac{2}{3} \mathrm{t}^{3}\right) \bar{\jmath}$
To find : Radius of curvature at $\mathrm{t}=2 \mathrm{sec}$.
Solution :
Differentiating \bar{r} w.r.t to t
$\frac{d \bar{r}}{d t}=\bar{v}=\left(\frac{3}{2} \times 2 \mathrm{t}\right) \bar{\imath}+\left(\frac{2}{3} \times 3 \mathrm{t}^{2}\right) \bar{\jmath}$
$\bar{v}=3 \mathrm{t} \bar{\imath}+2 \mathrm{t}^{2} \bar{\jmath}$
Once again differentiating w.r.t to t
$\frac{d \bar{v}}{d t}=\bar{a}=3 \bar{\imath}+4 \mathrm{t} \bar{\jmath}$

$$
\begin{aligned}
& \bar{a}=3 \bar{\imath}+4 \mathrm{t} \bar{\jmath} \\
& \text { At } t=2 \mathrm{~s} \\
& \bar{v}=(3 \times 2) \bar{\imath}+\left(2 \times 2^{2}\right) \bar{\jmath} \\
& =6 \bar{\imath}+8 \bar{\jmath} \\
& \bar{a}=3 \bar{\imath}+(4 \times 2) \bar{\jmath} \\
& =3 \bar{\imath}+8 \bar{\jmath} \\
& \mathrm{v}=|\bar{v}|=\sqrt{6^{2}+8^{2}} \\
& =10 \mathrm{~m} / \mathrm{s} \\
& \begin{array}{lll}
i & j & k
\end{array} \\
& \bar{a} \times \bar{v}=3 \quad 8 \quad 0 \\
& 680 \\
& =\mathrm{i}(0-0)-\mathrm{j}(0-0)+\mathrm{k}(24-48) \\
& =-24 \mathrm{k} \\
& |\bar{a} \times \bar{v}|=24
\end{aligned}
$$

Radius of curvature $=\frac{v^{3}}{|\bar{a} \times \bar{v}|}=\frac{10^{3}}{24}$
$=41.6667 \mathrm{~m}$
Q. 6 d) A Force of 100 N acts at a point $\mathrm{P}(-2,3,5) \mathrm{m}$ has its line of action passing through $\mathrm{Q}(10,3,4) \mathrm{m}$. Calculate moment of this force about origin $(0,0,0)$.
(5 marks)

Solution :

Given: $\mathrm{O}=(0,0,0)$

$$
\begin{aligned}
& \mathrm{P}=(4.5,-2) \\
& \mathrm{Q}=(-3,1,6) \\
& \mathrm{A}=(3,2,0) \\
& \mathrm{F}=100 \mathrm{~N}
\end{aligned}
$$

To find : Moment of the force about origin

Solution:

Let \bar{p} and \bar{q} be the position vectors of points P and Q with respect to the origin O
$\therefore \overline{O P}=-2 \bar{\imath}+3 \bar{\jmath}+5 \bar{k}$
$\therefore \overline{O Q}=10 \bar{\imath}+3 \bar{\jmath}+4 \bar{k}$
$\therefore \overline{P Q}=\overline{O Q}-\overline{O P}=(10 \bar{\imath}+3 \bar{\jmath}+4 \bar{k})-(-2 \bar{\imath}+3 \bar{\jmath}+5 \bar{k})$
$=\mathbf{1 2} \overline{\boldsymbol{\imath}}-\overline{\boldsymbol{k}}$
$\therefore|P Q|=\sqrt{12^{2}+(-1)^{2}}=\sqrt{145}$
Unit vector along $\mathrm{PQ}=\overparen{P Q}=\frac{\overline{P Q}}{\mid \overline{P Q \mid}}=\frac{\mathbf{1 2 \overline { \iota } - \overline { k }}}{\sqrt{145}}$
Force along $\mathrm{PQ}=\bar{F}=100 \times \frac{\mathbf{1 2 \overline { \imath }}-\overline{\boldsymbol{k}}}{\sqrt{145}}$
Moment of F about $\mathrm{O}=\overline{O P} \times \bar{F}$

$$
\begin{aligned}
& =\frac{100}{\sqrt{145}} \times \begin{array}{ccc}
\bar{\imath} & \bar{\jmath} & \bar{k} \\
-2 & 3 & 5 \\
12 & 0 & -1
\end{array} \\
& =8.3045(-3 \bar{\imath}+58 \bar{\jmath}-36-\overline{\boldsymbol{k}}) \\
& =-24.9135 \bar{\imath}+481.661 \bar{\jmath}-298.962 \bar{k} \mathrm{Nm}
\end{aligned}
$$

Moment of the force $=-24.9135 \bar{\imath}+481.661 \bar{\jmath}-298.962 \bar{k} \mathrm{Nm}$

