

MUMBAI UNIVERSITY

SEMESTER -1

ENGINEERING MECHANICS QUESTION PAPER – DEC 2017

Q.1 Attempt any four questions

Q.1(a) State and prove varigon's theorem.

(5 marks)

Solution:

Statement:

The algebraic sum of the moments of a system of coplanar forces about any point in the plane is equal to the moment of the resultant force of the system about the same point.

 $\Sigma M_A^F = \Sigma M_A^R$

Let P and Q be two concurrent forces at O, making angle θ_1 and θ_2 with the X-axis

Let R be the resultant making an angle $\boldsymbol{\theta}$ with X axis

Let A be a point on the Y-axis about which we shall find the moments of P and Q and also of resultant R.

Let d_1, d_2 and d be the moment arm of P,Q and R from moment centre A

The x component of forces P,Q and R are P_x ,Q_x and R_x

$$\therefore M_A{}^R = R \ x \ d$$

 $=R(OA.cos\theta)$

$$=OA.R_x$$

Adding (1) and (2)

$$\therefore M_A{}^P\!\!+\!M_A{}^Q\!\!=\!\!Pd_1\!\!+\!Qd_2$$

 $\Sigma M_A{}^F = P \; x \; OAcos\theta_1 + Q \; x \; OAcos \; \theta_2$

=OA.P_x+OA.Q_x (as P_x =P.cos θ_1 and Q_x =Qcos θ_2)

$$=OA(P_x+Q_x)$$

$$\therefore \Sigma M_A{}^F = OA(R_x) \quad \dots \dots (3)$$

From (4) and (3)

 $\Sigma M_A F = \Sigma M_A$

Thus, Varigon's theorem is proved

Net moment is 2300 Nm(anticlockwise)

$$\therefore \text{ X co-ordinate of centroid } (\overline{x}) = \frac{\Sigma Ax}{\Sigma A} = \frac{1095.8704}{157.0796} = 6.9765 \text{ cm}$$

 $\therefore \text{ Y co-ordinate of centroid } (\overline{y}) = \frac{\Sigma A y}{\Sigma A} = \frac{2000}{157.0796} = 12.7324 \text{ cm}$

Centroid = (6.9765,12.7324) cm

Q.1(d) A force of 500 N is acting on a block of 50 kg mass resting on a horizontal surface as shown in the figure. Determine the velocity after the block has travelled a distance of 10m. Co efficient of kinetic friction is 0.5.

To find : Velocity after the block has travelled a distance of 10 m

Solution:

The body has no motion in the vertical direction.

- $\therefore \Sigma F_y = 0$
- $\therefore N 50g + Psin30 = 0$
- ::N = 50g 500sin30

Let us assume that F is the kinetic frictional force

 $\therefore F = \mu_k \ge N$

 $:: F = 0.5(50 \text{ g} - 500 \sin 30)$

 $:\cdot F = 25g - 125$

By Newton's second law of motion

 $\sum F_x = ma$ $\therefore P\cos \Theta - F = 50a$ $\therefore 50a = 312.7627$ $\therefore a = 6.2553 \text{ m/s}^2$

By kinematics equation

 $v^2 = u^2 + 2 x a x s$ ∴ $v^2 = 0^2 + 2 x 6.2553 x 10$

∴ v= 11.1851 m/s

The velocity of the block after travelling a distance of 10 m = 11.1851 m/s

Q.1(e) The position vector of a particle which moves in the X-Y plane is given by $\bar{r} = (3t^3 - 4t^2)\bar{\iota} + (0.5t^4)\bar{j}$ (5 marks) Solution: **Given** : $\bar{r} = (3t^3 - 4t^2)\bar{\iota} + (0.5t^4)\bar{j}$ To find : Velocity and acceleration at t=1s Solution: $\bar{r} = (3t^3 - 4t^2)\bar{\iota} + (0.5t^4)\bar{\iota}$ Differentiating w.r.t to t $\therefore \frac{d\bar{r}}{dt} = \bar{v} = (9t^2 - 8t) \,\bar{\iota} + (2t^3) \,\mathrm{m/s}$(1) Differentiating once again w.r.t to t $\therefore \frac{d\overline{v}}{dt} = \overline{a} = (18t-8) \,\overline{\iota} + (6t^2) \,\overline{J}$ $\therefore \bar{a} = (18t-8) \bar{i} + (6t2) \bar{j} \text{ m/s}^2 \dots (2)$ At t = 1, Substituting t=1 in (1) and (2) At t=1 s $\overline{v} = \overline{\iota} + 2\overline{j} \text{ m/s}$ $\bar{a} = 10\bar{\iota} + 6\bar{j}$ m/s² For magnitude : $v = \sqrt{1^2 + 2^2}$

$$=\sqrt{5}$$

=2.2361 m/s
 $a = \sqrt{10^2 + 6^2}$
= $\sqrt{136}$
= 11.6619 m/s²

Velocity at t=1s is 2.2361 m/s Acceleration at t=1s is 11.6619 m/s²

Given : Forces on the bell crank lever

To find : Resultant and it's position w.r.t hinge B

Solution:

Let the resultant of the system of forces be R and it is inclined at an angle $\boldsymbol{\theta}\,$ to the horizontal

The hinge is in equilibrium

Taking direction of forces towards right as positive and towards upwards as positive

Applying the conditions of equilibrium

 $\Sigma F_x = 0$

Let the resultant force R be acting at a point x from the point A and it is at a perpendicular distance of d from point A

Taking moment of forces about point A and anticlockwise moment as positive

Applying Varigon's theorem,

203.8633 x d = -(100 x 20) - (120 x 40 cos 30)

d = -30.2012 cm = 30.2012 cm(as distance is always positive)

 $\sin 44.6624 = \frac{x}{30.2012}$

x = 21.2293 cm

Distance from point B = 40 - 21.2293

=18.7707 cm

Resultant force = 203.8633 N (at an angle of 44.6624° in first quadrant)

Distance of resultant force from hinge B = 18.7707 cm

Q2b) Determine the reaction at points of constant 1,2 and 3. Assume smooth surfaces.

(6 marks)

Given: The spheres are in equilibrium

To find: Reactions at points 1,2 and 3

Solving (1) and (2)

 $R_1 = 19.75 \text{ N}$ and $R_2 = 32.2493 \text{ N}$ (3)

Let the reaction force between the wo spheres be R_2 and it acts at an angle α with X-axis

Sphere A is in equilibrium

Applying conditions of equilibrium

 $\sum F_y=0$

 $R_1 cos 25 - R_2 sin \alpha - g = 0$

 $R_2 \sin \alpha = 8.0896$ (4) (From 3)

 $\sum F_x=0$

 $R_1 \sin 25 - R_2 \cos \alpha = 0$ $R_2 \cos \alpha = 19.75 \sin 25$ $R_2 \cos \alpha = 8.3467$ (5)

Squaring and adding (4) and (5)

 $R_2^2(\cos^2\alpha + \sin^2\alpha) = 135.1095$

R₂=11.6237 N

Dividing (4) by (5)

$\underline{R_2 sin \alpha} \underline{8.0896}$

 $R_2 cos \alpha$ 8.3467

 $\alpha = \tan^{-1}(0.9692)$

=44.1038°

 R_1 =19.75 N (75° with positive direction of X-axis in first quadrant)

 R_2 =11.6237 N (44.1038° with negative direction of X-axis in third quadrant)

 R_3 =32.2493 N (75° with negative direction of X axis in second quadrant)

Q.2 c) Two balls having 20kg and 30 kg masses are moving towards each other with velocities of 10 m/s and 5 m/s respectively as shown in the figure.

If after the impact ,the ball having 30 kg mass is moving with 6 m/s velocity to the right then determine the coefficient of restitution between the two balls. (6 marks)

Solution:

Taking direction of velocity towards right(\rightarrow) as positive and vice versa

Given :m1=20 kg

 $m_2=30 \text{ kg}$

Initial velocity of ball $m_1(u_1)=10$ m/s

Initial velocity of ball $m_2(u_2) = -5$ m/s

Final velocity of ball $m_2(v_2) = 6$ m/s

<u>To find</u> : Co-efficient of restitution(e)

Solution:

This is a case of direct impact as the centre of mass of both balls lie along a same line.

According to the law of conservation of momentum:

 $m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$ $\therefore 20 \times 10 + 30 \times (-5) = 20 \times v1 + 30 \times 6$ $\therefore 200 - 150 = 20 \times v1 + 180$ $\therefore -130 = 20 \times v1$ $\therefore v1 = -6.5 \text{ m/s}$

Co-efficient of restitution (e) = $(\nu 2 - \nu 1)/(u1 - u2)$

 $\therefore e = (6 - (-6.5))/(10 - (-5))$

∴e=12.5/15

∴e=0.8333

The co-efficient of restitution (e) between the two balls is 0.8333

Q.3(a) Determine the position of the centroid of the plane lamina. Shaded portion is removed. (8 marks)

Solution:

FIGURE	AREA (mm ²)	X co-ordinate Of centroid (mm)	Y co-ordinate Of centroid (mm)	Ax (mm ²)	Ay (mm ²)
Rectangle	120 x 100 =12000	$\frac{120}{2} = 60$	$\frac{120}{2} = 60$	720000	600000
Triangle	$\frac{1}{2} \times 120 \times 60$ =3600	$\frac{120}{3} = 40$	$\frac{-60}{3} = -20$	144000	-72000
Semicircle	$\frac{1}{2} \times \boldsymbol{\pi} \times 60^{2}$ =1800 $\boldsymbol{\pi}$ =5654.8668	$\frac{120}{2} = 60$	$100 + \frac{4*60}{3\pi}$ =125.4648	339292.01	709486.68
Circle (Removed)	$-\pi \times 40^2$ =5026.5482	$\frac{120}{2} = 60$	100	-301592.89	-502654.82
Total	16228.32			901699.12	734831.86

 $\frac{\Sigma Ax}{\Sigma A} = \frac{901699.12}{16228.32} = 55.56 \text{ mm}$

 $\frac{\Sigma Ay}{\Sigma A} = \frac{734831.86}{16228.32} = 45.28 \ mm$

Centroid is at (55.56,45.28)mm

Q3(b) Explain the conditions for equilibrium of forces in space.

(6 marks)

Answer:

A body is said to be in equilibrium if the resultant force and the resultant momentum acting on a body is zero.

For a body in space to remain in equilibrium, following conditions must be satisfied:

- (1) Algebraic sum of the X components of all the forces is zero. $\Sigma F_x = 0$
- (2)Algebraic sum of the Y components of all the forces is zero. $\Sigma F_y=0$
- (3)Algebraic sum of the Z components of all the forces is zero. $\Sigma F_z=0$
- (4)Algebraic sum of the moment of all the forces about any point in the space is zero.

Q.3(c) A 30 kg block is released from rest.If it slides down from a rough incline which is having co-efficient of friction 0.25.Determine the maximum compression of the spring.Take k=1000 N/m. (6 marks)

Solution:

Given : Value of spring constant = 1000 N/m

$$W = 30N$$

 $\mu s = 0.25$

To find : Maximum compression of the spring

Solution :

Let the spring be compressed by x cm when the box stops sliding

 $N = W\cos 30$

 $= 30 \ge 0.866$

= 25.9808 N

Frictional force = $\mu_s N$

= 0.25 x 25.9808

= 6.4952 N

Displacement of block = (1.6+x) m

Work done against frictional force = $F_D x s$

=6.4952(1.6+x)

At position 1

 $v_1=0 m/s$

Vertical height above position(II) = $h = (1.6+x) \sin 30$

 $PE_1 = mgh = 30(1.6+x)sin30 = 15(1.6+x)$

$$KE_1 = \frac{1}{2} x mv_1^2 = 0$$

Compression of spring=0

Initial spring energy $=\frac{1}{2}x K x^2 = 0$

At position II

Assuming this position as ground position

 $H^2\!=0$

 $P.E^2 = 0$

Speed of block v = 0

K.E₂ =
$$\frac{1}{2}$$
 x mv² = 0

Compression of spring = x

Final spring energy =
$$E_S = \frac{1}{2}x K x (x^2)$$

 $= 0.5 \text{ x } 1000 \text{ x } \text{ x}^2$

 $= 500x^{2}$

Appling work energy principle for the position (I) and (II)

 $U_{1-2} = KE_2 - KE_1$

 $-\mathbf{W}_{\mathrm{F}} + \mathbf{P}\mathbf{E}_1 - \mathbf{P}\mathbf{E}_2 - \mathbf{E}_{\mathrm{S}} = \mathbf{K}\mathbf{E}_2 - \mathbf{K}\mathbf{E}_1$

 $-6.4952(1.6+x) + 15(1.6+x) - 0 - 500 \ x \ 2 = 0 - 0$

 $500x^2 - 8.5048x - 13.6077 = 0$

x=0.1737 m

The maximum compression of the spring is 0.1737 m

Q.4(a)Find the support reactions at A and B for the beam loaded as shown in the given figure. (8 marks)

Solution:

Given : Various forces on beam

To find : Support reactions at A and B

Solution:

Draw PQ \perp to RS

Effective force of uniform load $=20 \times 6 = 120 \text{ kN}$

 $2 + \frac{6}{2} = 5$ m

This load acts at 5m from A

Effective force of uniformly varying load $=\frac{1}{2} x (80-20) x 6$

=180 kN

$$2 + \frac{6}{3} \times 2 = 6m$$

This load acts at 6m from A

Squaring and adding (1) and (2) $R_A^2(\sin^2\alpha + \cos^2\alpha) = 36325.3333$ $R_A = 190.5921 \text{ N}$ Dividing (2) by (1) $\frac{R_A \sin \alpha}{R_A \cos \alpha} = \frac{108.008}{157.0393}$ $\alpha = \tan^{-1}(0.6877)$ $= 34.5173^\circ$

Reaction at point A = 190.5921 N at 34.5173° in first quadrant

Reaction at B = 314.0785 N at 60° in second quadrant

Q 4b) The V-X graph of a rectilinear moving particle is shown. Find the acceleration of the particle at 20m,80 m and 200 m. (6 marks)

Solution :

Given : V-X graph of a rectilinear moving particle

To find : Acceleration of the particle at 20m,80 m and 200 m.

Solution :

$$\mathbf{a} = \mathbf{v} \frac{d\nu}{dx}$$

Part 1: Motion from O to A

O is (0,0) and A is (60,6) Slope of v-x curve $\frac{dv}{dx} = \frac{6-0}{60-0} = 0.1 \text{s}^{-1}$ Average velocity $= \frac{u+v}{2} = \frac{6+0}{2} = 3 \text{ m/s}$ $a_{OA} = v\frac{dv}{dx} = 3 \times 0.1 = 0.3 \text{ m/s}^2$

Part 2: Motion from A to B

A is (60,6) and B is (180,6) $\frac{dv}{dx} = \frac{6-6}{180-60} = 0 \text{ m/s}^2$ $a_{AB} = v\frac{dv}{dx} = 0 \text{ m/s}^2$

Part 3: Motion from B to C

B is (180,6) and C is (210,0)

$$\frac{dv}{dx} = \frac{0-6}{210-180} = -0.2 \,\mathrm{s}^{-1}$$

Average velocity = $\frac{u+v}{2} = \frac{6+0}{2} = 3$ m/s

$$a_{\rm BC} = v \frac{dv}{dx} = 3 \text{ x} (-0.2) = -0.6 \text{ m/s}^2$$

Acceleration of particle at x = 20 m is 0.3 m/s²

Acceleration of particle at x = 80 m is 0 m/s²

Acceleration of particle at x = 200 m is -0.6 m/s²

Q.4(c) A bar 2 m long slides down the plane as shown. The end A slides on the horizontal floor with a velocity of 3 m/s. Determine the angular velocity of rod AB and the velocity of end B for the position shown. (6 marks)

20°

30°

Solution:

Given : $v_a = 3 m/s$

Length of bar AB = 2 m

 $V_A = 3m/s$

A

To find : Angular velocity ω

Velocity of end B

Solution:

Let ω be the angular velocity of the rod AB

ICR is shown in the free body diagram

:
$$IA = \frac{2 \sin 80}{\sin 30} = 3.9392 \text{ m}$$

: Angular velocity of the rod AB = $\frac{va}{r} = \frac{3}{3.9392} = 0.7616$ rad/s (clockwise direction)

: Instantaneous velocity of point $B = r\omega = IB \ge \omega = 3.7588 \ge 0.7616 = 2.8626$ m/s

The instantaneous velocity at point B is always inclined at 30° in the third quadrant (as shown in the free body diagram)

Angular velocity of the rod AB = 0.7616 rad/s (clockwise)

Instantaneous velocity at point B = 2.8626 m/s ($30^{\circ} \checkmark$)

Q.5(a)Referring to the truss shown in the figure. Find :

(a) Reaction at D and C

(b)Zero force members.

(c)Forces in member FE and DC by method of section.

(d)Forces in other members by method of joints.

(8 marks)

Solution:

By Geometry:

In \triangle ADC, \angle ADC = \angle CAD = 30°

AC = CD = 1

Similarly, in \triangle EDC,

ED = EC

 Δ DEG and Δ CEG are congruent

 $DG = GC = \frac{l}{2}$

In \triangle DEG, \angle EDG=30°, \angle DGE=90°

 $\tan 30 = \frac{EG}{DG}$

EG = DG.tan30 =
$$\frac{l}{2} \ge \frac{1}{\sqrt{3}} = \frac{l}{2\sqrt{3}}$$

In Δ ACH,

 $CH = \frac{AC}{2} = \frac{l}{2}$

$DH = DC + CH = 1 + \frac{l}{2} = \frac{3l}{2}$

No horizontal force is acting on the truss, so no horizontal reaction will be present at point A

The truss is in equilibrium

Applying the conditions of equilibrium

$$\Sigma M_{D} = 0$$

-20 x DG -50 x DH + RC x DC = 0
-20 x $\frac{l}{2}$ -50 x $\frac{3l}{2}$ + RC x 1 = 0
-10 - 75 + RC = 0
R_C = 85 kN
 ΣF_{y} =0
-20 - 50 + R_D + R_C=0
R_D = -15kN

Loading at point B and F is shown

As per the rule, member BF will have zero force and is a zero force number.

F

C

Similarly,Member CF will have zero force

Method of sections :

Applying the conditions of equilibrium to the section shown $\Sigma M_D = 0$ -20 x DG - F_{EC}cos 30 x EG - F_{EC}sin30 x DG = 0 -20 x $\frac{l}{2}$ x - F_{EC}cos30 x EG - F_{EC}sin30 x DG = 0 -20 x $\frac{l}{2}$ x - F_{EC} x $\frac{\sqrt{3}}{2}$ x $\frac{l}{2}$ - F_{EC} x $\frac{1}{2}$ x $\frac{l}{2}$ = 0 -10 x 1 - F_{EC} x $\frac{l}{4}$ -F_{EC} x $\frac{l}{4}$ = 0 - $\frac{2l}{4}$ F_{EC} = 10L F_{EC} = -20kN R_D - 20 - F_{EC}sin30 + F_{EA}sin30 = 0

 $-15 - 20 + 20 \times 0.5 + F_{EA} \times 0.5 = 0$

 $F_{EA} = 50 k N$

 $F_{EC}cos30 + F_{EA}cos30 + F_{DC} = 0$

 $-20 \ x \ 0.866 + 50 \ x \ 0.866 + F_{DC} = 0$

 $F_{DC} = -25.9808 \text{kN}$

Method of joints:

Joint A

-50 - $F_{AE}sin30$ - $F_{AC}cos30 = 0$

 $-50 - 50 \ge 0.5 = F_{AC} \ge 0.866$

 $F_{AC} = -86.6025 \text{kN}$

Joint D

 $F_{DC} + F_{DE} cos 30 = 0$

 $-25.9808 + 0.866F_{DE} = 0$

 $F_{DE} = 30 k N$

Final answer :

Member	Magnitude (in kN)	Nature
AE (AF and EF)	50	Tension
AC (AB and BC)	86.6025	Compression
EC	20	Compression
DE	30	Tension
DC	25.9808	Compression
FB	0	
FC	0	

Q.5b) Determine the force P required to move the block A of 5000 N weight up the inclined plane, coefficient of friction between all contact surfaces is 0.25. Neglect the weight of the wedge and the wedge angle is 15 degrees. (6 marks)

Given : Weight of block A = 5000 N

µs=0.25

Wedge angle = 15°

To find : Force P required to move block A up the inclined plane

Solution:

The impending motion of block A is to move up

The block A is in equilibrium

N₁,N₂,N₃ are the normal reactions

 $F_{s1} = \mu_1 N_1 = 0.25 N_1$

 $F_{s2} = \mu_2 N_2 = 0.25 N_2$

 $F_{s3} = \mu_3 N_3 = 0.25 N_3$

Applying the conditions of equilibrium

 $\Sigma F_y = 0$

 $\therefore -5000 + N_1 \cos 60 - F_{s1} \sin 60 - F_{s2} \sin 15 + N_2 \cos 15 = 0$

 $\therefore N_1 \ge 0.5 - 0.25N_1 \ge 0.866 - 0.25 N_2 \ge 0.2588 + N_2 \ge 0.9659 = 5000$

> OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

(From 1)

Applying the conditions of equilibrium

 $\Sigma F_x = 0$

 $::N_1 \sin 60 + F_{s1} \cos 60 - F_{s2} \cos 15 - N_2 \sin 15 = 0$

 $\therefore 0.866 \text{ N}_1 + 0.25 \text{ x } \text{N}_1 \text{ x } 0.5 - 0.25 \text{ x } \text{N}_2 \text{ x } 0.9659 - \text{N}_2 \text{ x } 0.2588 = 0 \text{(From 1)}$

 $\therefore 0.991 \text{ N}_1 - 0.5003 \text{ N}_2 = 0$

Solving equation, no 2 and 3

 $N_1 = 2417.0851 \ N$

 $N_2 = 4787.79 \ N$

The impending motion of block B is towards left

Block B is in equilibrium. Applying the conditions of equilibrium

 $\boldsymbol{\Sigma}F_{y}=\boldsymbol{0}$

 $:: N_3 + F_{s2} \sin 15 - N_2 \cos 15 = 0$

 $:: N_3 + 0.25 N_2 \ge 0.2588 - N_2 \ge 0.9659 = 0$

 $:: N_3 - 0.9012 \ N_2 = 0$

 $:: N_3 = 0.9012 \text{ x } 4787.79 = 4314.7563$

Applying conditions of equilibrium

 $\Sigma F_x = 0$

- $\therefore -P + F_{s3} + F_{s2} \cos 15 + N_2 \sin 5 = 0$
- $\therefore 0.25 \text{ N}_3 + 0.25 \text{ N}_2 \text{ x } 0.9659 + \text{N}_2 \text{ x } 0.2588 = \text{P}$

 $\therefore P = 0.25 \text{ N}_3 + 0.5003 \text{ N}_2 = 0.25 \text{ X} \text{ 4314.7563} + 0.5003 \text{ x} \text{ 4787.79} = 3474 \text{ N}$

The force P required to move the block A of weight 5000 N up the inclined plane is P=3474 N

Q 5c) Determine the tension in a cable BC shown in fig by virtual work method.

500 N

(6 marks)

 $\Theta = 50o$

Length of rod = 3.75 mm + 1.5 mm = 5.25 mm

To find : Tension in cable BC

Solution:

Let rod AB have a small virtual angular displacement θ in the clockwise direction No virtual work will be done by the reaction force RA since it is not an active force Assuming weight of rod to be negligible Let A be the origin and dotted line through A be the X-axis of the system

Active force(N)	Co-ordinate of the point of	Virtual displacement
	action along the force	
3500	Y co-ordinate of	δ y _D =3.75cos θ δ θ
	$D=y_D=3.75\sin\theta$	
Tcos30	X co-ordinate of	$\delta x_{\rm B}$ =-5.25sin $\theta \delta \theta$
	$B=x_B=5.25\cos\theta$	

Tsin30	Y co-ordinate of	$\delta y_{\rm B}=5.25\cos\theta\delta\theta$
	$B=y_B=5.25\sin\theta$	

By principle of virtual work :

-3500 x yd -Tsin 30 x yB -Tcos 30 x xB =0

 $-3500(3.75\cos\theta\delta\theta) - T\sin^2(5.25\cos\theta\delta\theta) - T\cos^2(-5.25\sin\theta\delta\theta) = 0$

Putting value of $\theta = 50^{\circ}$ and dividing the above equation by $\delta \theta$

 $(-3500 \times 3.75\cos 50) - (T\sin 30 \times 5.25\cos 50) + (T\cos 30 \times 5.25\sin 50) = 0$

 $5.25T(-\sin 30.\cos 50 + \cos 30.\sin 50) = 3500 \times 3.75 \cos 50$

 $T = \frac{3500 * 3.75 cos 50}{5.25 (\cos 30. sin 50 - sin 30. cos 50)}$

 $=\frac{3500*3.75cos50}{5.25sin20}$

= 4698.4631 N

The tension in the cable BC is 4698.4631 N

 $=\frac{500}{9.81}$

=50.9684 kg

Normal reaction (N) on the crate = $500 \cos 15$

Kinetic friction $(F_k) = \mu_k x N$

 $= 0.4 \text{ x} 500 \cos 15$

= 193.1852 N

Let T be the force down the incline

Taking forces towards right of the crate as positive and forces towards left as negative

 $T+F_k=500sin15\\$

 \therefore T = 500sin15 - 193.1852

∴ T = -63.7756 N

By Newton's second law of motion

$$a = F/m$$

$$\therefore a = \frac{-63.7756}{50.9684} = -1.2513 \text{ m/s}^2$$

Using kinematical equation:

 $v^2 = u^2 + 2as$

 $\therefore 0 = 202 - 2 \ge 1.2513 \ge s$

∴ s = 159.8366 m

Using kinematical equation:

v = u + at

 $\therefore 0 = 20 - 1.2513t$

∴ t = 15.9837 s

 \therefore Distance travelled by the block before stopping = 159.8366 m

 \therefore Time taken by the block before stopping = 15.9847 s

Q.6b)Derive the equation of path of a projectile and hence show that equation of path of projectile is a parabolic curve. (5 marks)

Solution :

Let us assume that a projectile is fired with an initial velocity u at an angle θ with the horizontal. Let t be the time of flight.

Let x be the horizontal displacement and y be the vertical displacement.

HORIZONTAL MOTION :

In the horizontal direction, the projectile moves with a constant velocity.

Horizontal component of initial velocity u is $u.cos\theta$

Displacement = velocity x time

 $x = u.cos\theta \ x \ t$

$$t = \frac{x}{ucos\theta}$$

VERTICAL MOTION OF PROJECTILE:

In the vertical motion, the projectile moves under gravity and hence this is an accelerated motion. Vertical component of initial velocity $u = u.sin\theta$ Using kinematics equation :

 $s = u_y t + \frac{1}{2} x a x t^2$

$$y = usin\theta x \frac{x}{ucos\theta} - \frac{1}{2} x g x (\frac{x}{ucos\theta})^2$$

 $\mathbf{y} = \mathbf{x} \mathbf{t} \mathbf{a} \mathbf{n} \mathbf{\theta} - \frac{g x^2}{2 u^2 \cos^2 \mathbf{\theta}}$

This is the equation of the projectile

This equation is also the equation of a parabola

Thus, proved that path traced by a projectile is a parabolic curve.

Q.6c)A particle is moving in X-Y plane and it's position is defined by $\overline{r} = (\frac{3}{2}t^2)\overline{\iota} + (\frac{2}{3}t^3)\overline{j}$. Find radius of curvature when t=2sec. (

(5 marks)

Solution :

Given: $\overline{r} = (\frac{3}{2}t^2)\overline{\iota} + (\frac{2}{3}t^3)\overline{J}$

To find : Radius of curvature at t = 2 sec.

Solution :

Differentiating \bar{r} w.r.t to t

$$\frac{d\bar{r}}{dt} = \bar{v} = (\frac{3}{2} \ge 2t)\bar{\iota} + (\frac{2}{3} \ge 3t^2)\bar{J}$$

$$\bar{v} = 3t\bar{\iota} + 2t^2\bar{j}$$

Once again differentiating w.r.t to t

$$\frac{d\,\bar{v}}{dt} = \bar{a} = 3\bar{\iota} + 4t\bar{J}$$

P=(4.5, -2)Q=(-3,1,6)A=(3,2,0)F=100 N

To find : Moment of the force about origin

Solution:

Let \overline{p} and \overline{q} be the position vectors of points P and Q with respect to the origin O

Moment of the force = $-24.9135\bar{i} + 481.661\bar{j} - 298.962\bar{k}$ Nm